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“If the world was complicated, everyone would understand |
Woody Allen
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Euclid’s textbook current for 2000 years!

500 BC

o~ — ———

1637 Cartesian coordinates-Descartes
1545 number line developed

1170-1250 debts seen as negative numbers-Pisa

800 zero used in India

C: negative numbers used in India and China
300 BC, Euclid-"Father of Geometry"

d 547 BC, Thales-"the first true mathematician”
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pPosition on a surface.
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= step evgr made in the exact sciences.”

-~ Analytic g\ffmetry: “...the greatest single
John Stuart Mill
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* Adding vectors

u+v?
\V/
Add head to tail:
same as the
number
u

line but now in 2D
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* Divide vectors u/v
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g to take the reciprocal of a vector:
'."the vector lying along the number line
d the reciprocal
Reorientate vector, bingo! Reciprocal of a vector.

s—— e
e

" - i

——— — = a




f o

-
S analytic
e_ttr e

—

.

The reciprocal of a Cartesian vector is a
vector of the same direction but the
reciprocal length.
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1799 Complex numbers, Argand diagram
1637 Cartesian coordinates-Descarte
1545 negative numbers established, number line

1170-1250 debts seen as negative numbers-Pisa

300BC, Euclid-"Father of Geometry"

d 475BC, Pythagoras
d 547BC, Thales-"the first true mathematician”
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As operators, complex numbers describe
Rotations and dilations, and hence an invet
IS a vector of reciprocal length,

4 with opposite direction of rotation.

Representation vs Operator?
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| 1843 Quétérnions—HamiIton

1799 Complex numbers, Argand diagram
1637 Cartesian coordinates-Descarte
1545 negative numbers established, number line

1170-1250 debts seen as negative numbers-Pisa

300BC, Euclid-"Father of Geometry"

500BC —

d 475BC, Pythagoras
d 547BC, Thales-"the first true mathematician”
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Maxwell wrote hi ctromagnetic equations using quaternions.
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, and a muting

- str ucture unifies Cartesian coordinates, quaternions and
mb _rs into a single real framework.

S ordlnates described by e,, e,, e;, quaternions by the
f—» £e @362, €56, 6,65, and the unit imaginary by the trivector e,e.e;
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il existence of five regular solids
jmolrﬁ three dimensional space(6 In
> 4D)

izawty and EM follow inverse square

J‘fa‘ws to very high precision.

- Orbits(Gravity and Atomic) not stable
withmore than 3 D.

® Tests for extra dimensions failed,
must be sub-millimetre
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1843 Quaternions-Hamilton
1799 Complex numbers, Argand diagram

1637 Cartesian coordinates-Descarte
1545 negative numbers established, number line

1170-1250 debts seen as negative numbers-Pisa

300BC, Euclid-"Father of Geometry"

500BC — d 475BC, Pythagoras
d 547BC, Thales-"the first true mathematician”
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an coordinates, and the propertles of
x numbers and quaternions into a single
vork

3 Id have gone on to dominate

= hematlcal physics....”, but..
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= °CI|fford died young, at the age of just 33

- Vector calculus was heavily promoted
by Gibbs and rapidly became popular, eclipsing
Clifford’s work, which in comparison appeared
strange with its non-commuting variables and
bilinear transformations for rotations.
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".:‘,. =w, N note that: a scalar.
. _ — —__

—._—-'t-ﬁ—-‘ﬁ,:d.. =
~~ Therefore the inverse vector is: a vector with the same
== , direction
' and inverse length.
To check we calculate as required.

Hence we now have an intuitive definition of multiplication and division of vect
subsuming the dot and cross products.



,_:;i first appeared as the roots to quadratic equations.
IIy considered "imaginary’, and so disregarded.

entlally represents a rotation and dilation operator. Real
5 CO respond to pure dilations, and complex solutions
< ofely 1d to rotations and dilations.

' q:‘ ff'e: , _
- _;": — This now states that an operator x acting twice on a

—

——— vector returns the negative of the vector. Hence x
T represents two
90deg rotations, or the bivector of the plane e,e,,

- whlck‘ 8IV€S

which impli as required.

Hence we can replace the unit imaginary with the real geometric entity,
the bivector of the plane e,e..
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With a solution:

Where x represents a rotation and dilation operator on a vector.



us we have the two solutions, both in the field of real numbers,
th the geometric interpretation of the solutions as 60 deg rotations in the plane
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1o, (Ampere’s law);

0, (Faraday’s law);

0, (Gauss’ law of magnetism

i

Where:
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ViERwell’s egg_gtiongeiﬁﬁ""’

Four-gradient

Field variable

Four-current

Exercise: Describe Maxwell’s equations in English.



B Gibh's vectors vs GA

Gibb’s vector calculus GA

Fields E.B F=E+1B
EM equations V- E = %j VxE+dB=0 OF =

VxB—-0E=pnJ,V-B=0
Charge conservation V.J4 5 8’0 = -J=0
Energy in fields %E(EQ +B?%) ﬁ(E x B) —%EO\F\Q
Invariants B? — E? B-E F?
Minkowski Force K = vq(E + v x B) K = —quF

Potential function

E=-VV -2 B=VxA

F=0A
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o0 = Complex numbers

—_— Vectors
-~ w  Pseudovectors
—1b- Pseudoscalars
S v+ Anti-symmetric EM field tensor E+iB
a+w Quaternions or Pauli matrices

at+v Four-vectors



JBSearch-areas in GA®
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':tum tunneling and quantum field
_“

peam dynamics and buckling

—_ ﬁmputer vision, computer games

.ﬁ_r_

= o8 3

-‘%'.’-:- ~* gquantum mechanics-EPR
~ ® guantum game theory
® sighal processing-rotations in N

gencrali iR R
generali



Penny Flip game Qubit

Solhitinng e,

Initial polarization '& _
vector - Hadamard precession

axis

€,

A

Dual orthogonal planes
of solutions for Q
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SRR Mapping —

‘map from complex spinors to 3D GA?

ap + 1as _.
=2l + =)= [:?; + ir:1] Y = ag + agleg

at spinors are rotation operators.
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Doran C, Lasenby A (2003) Geometric algebra for physicists
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(1,7} = 29"
“Dirac has redisovered Clifford algebra..”, Sommerfield

[hat is for Clifford basis vectors we have:

iIsomorphic to the Dirac agebra.



ame as the free Maxwell equation, except for the addition
“a mass term and expansion of the field to a full multivectol

Free Maxwell equation(j=0




nheMaths family e

HENED| numbers arethe dependable breadwinner
of tne 'fam,'\ tpa connolara orelagaeliflalel e =
EIVaeNnE IThe complex numbers are a slightly
'rlruner‘de Ut still respectable younger brother: not
onueEred, but algebraically complete. The
guEtErnIons, being noncommutative, are the
e'r*'ré"“ cousini who is shunned at important

' ﬁy gatherings. But the octonions are the crazy
;.Eﬂdfuncle nobody lets out of the attic: they

- are nonassociative.”—John Baez

The multivector now puts the reals, complex numbers and
quaternions all on an equal footing.


http://en.wikipedia.org/wiki/John_C._Baez
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SpPEGial relativity e

begin in 2D, which is sufficient to describe most phenomena.

L/

_presented as the bivector of the plane and so an extra
ype dimension is not required. This also implies 3D GA is sufficient

)e 4D Minkowski spacetime.

the correct spacetime distance.

=

We have the general Lorentz transformation given by:

Consisting of a rotation and a boost,
which applies uniformly to both
coordinate and field multivectors.

/ AV :2 hv 12 A .
P = —VC OV, Pe‘?’"f A\Y Compton scattering formula
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tmg account of existence,
2 looms up more dismayingly

tlme " Wheeler 1986
%A time Is a bivector, ie rotation.
= ’Iock time and Entropy time

_%?':‘
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errors in"mathemat
1‘
I BYAnOtECOaN iZinophatthevectorndot ana
sIe5S! products are two halves of a single
compined geometric product.

gifica 1910.

2_,_ Sihat the non-commuting properties of

FOUREaLIO!
or1Y31es

S — atrlces are a clumsy substitute for

e

~ -;fCIlfford S non-commuting orthonormal

=T

-~ axes of three-space. Circa 1930.
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JifioNRE s gEOMELIC algebra provides the most natural

| JFE‘SEF atlon o) f three -space, encapsulating the properties
Ealtesian coordinates, complex numbers and

2] Eermg S, I a single unified formalism over the real

J, =
2eio)] now have a division and square root operation.

SVIEXan eII s, four equations can be condensed into a single
e é:":Jc Uation, and the comﬁlex four-dimensional Dirac equation
~ = can be written in real three dimensional space.

-""__*7* *SR s described within a 3D space replacing Minkowski
~ _spacetime

_* GA is proposed as a unified language for physics and
- engineering which subsumes many other mathematical
formalisms, into a single unified real formalism.
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The geometric product
magnitudes

ab = a.b+aANb
a.b
a A b

allbl cos

allbl sin 6

In three dimensions we have:

a/Nb=1a x0b



"nlsed by Cardano in 1545 as valid
5pI0tiIoNs to cubics and quartics, along
‘the recogn|t|on of imaginary numbers

f'_° _Vleta, uses vowels for unknowns and use
powers. Liebniz 1687 develops rules for

sypaReligommanipulati@fiern

KYGcUIAYEM dioM = Sl (3 22+ |Ox—1=35
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ahENEaseneblcamenedepisithimseliitorthe
Werdraretnd nim. The unreasonable man
PENSISES 1IN his attempts to adapt the world to
'rjm_': [f. Therefore, all progress depends on

| _'_' ‘Unreasonable man.” George Bernard

."
..,_

| l_frphy s two laws of discovery:
5 ; : -“AII great discoveries are made by mistake.”

“If you don't understand it, it's intuitively
obvious.”

* “|t's easy to have a complicated idea. It's
very hard to have a simple idea.” Carver
Mead.
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BlEek concept of the
EL FC"|Id Book%’:H(B C,
ANUIN """';' PYAVIrtUe o
wrr of the things that exist Is called
OnE.

=2 A number IS a multitude
;;- @mposed of units.”

' 5_‘-"16. When two numbers having multiplied
one another make some number, the
number so produced is called plane, and
Its sides are the numbers which have

multiplied one another.”
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